首页 » 权威肽知 » 研制技术 » 研制技术 » 正文
蛋白多肽类药物药代动力学分析方法研究进展2
发布日期:2010-11-30  来源:全球肽网  浏览次数:1379
免疫学方法的缺点在于它测定的是蛋白多肽的免疫活性而不是生物活性;不能同时测定代谢 物,且具有抗原决定簇的代谢片段可能增加结果误差;不同来源的抗体与相同的蛋白多肽反 应可能有较大的差别;还可能受到内源物质的干扰。但免疫法毕竟是一种迅速,灵敏,适于 批处理的方法,已有数十种蛋白多肽被开发成能满足药物动力学研究的商品药盒。目前临床 药动学领域,免疫法已逐渐取代生物检定法。 1.3 同位素标记示踪法,放射性同位素标记技术是研究蛋白多肽在生物体内处置的一种最常用的方法。所使用的同位 素有125I, 99mTc, 3

免疫学方法的缺点在于它测定的是蛋白多肽的免疫活性而不是生物活性;不能同时测定代谢 物,且具有抗原决定簇的代谢片段可能增加结果误差;不同来源的抗体与相同的蛋白多肽反 应可能有较大的差别;还可能受到内源物质的干扰。但免疫法毕竟是一种迅速,灵敏,适于 批处理的方法,已有数十种蛋白多肽被开发成能满足药物动力学研究的商品药盒。目前临床 药动学领域,免疫法已逐渐取代生物检定法。 1.3 同位素标记示踪法,放射性同位素标记技术是研究蛋白多肽在生物体内处置的一种最常用的方法。所使用的同位 素有125I, 99mTc, 3H,14C, 35S 等,其中125I因比放射性高,半衰期适宜,标记制备简单 而最为常用。标记方法有两种,一是内标法,即把含有同位素的氨基酸加入生长细胞或合成 体系,该法对生物活性地影响可能较小,但由于制备复杂而限制了其广泛应用;二是外标法 ,常用化学方法如氯胺T或Iodogen法将125I连接于大分子上,因相对简单而被首 选。同位素法具有简便直观,检测迅速的优点,尤其适用于蛋白多肽药物的组织分布研究,但其 缺点亦显而易见。首先,它不能进行人体药物动力学研究;其次,同位素标记后是否会引起 药物的生物活性及其在生物体内的代谢行为发生变化,一直存在争议.前者可通过调整反应 条件和生物检定法加以改善和验证,基本上可使生物活性无明显变化;后者因药而异则复杂 的多,已有报道认为[6],放射性标记法可干扰表皮生长因子与细胞的相互作用, 从而导致 其体内清除的紊乱;最后,由于蛋白多肽进入体内会被降解代谢,或与其它蛋白质结合,总 的放射性不能代表药物动力学过程,因此如何鉴别样品的原药,降解物及结合物是该法中需 解决的关键问题,目前常用的方法有两种。 1.3.1 SDS-PAGE法 根据药物Mr的大小选择不同浓度的凝胶电 泳,通过控制电流等条件使得原 药与其它产物分开,然后通过切割胶条放射计数或放射自显影的方法,来检测电泳放射性图 谱。该法具有较高的分辨率和灵敏度,但电泳过程中,125I-小肽和游离 125I可能扩散至空白凝胶或电解液中,从而使结果可能偏高。 1.3.2 HPLC法 高效反相色谱(RHPLC),高效排阻液相色谱(SEHPLC )[7],高效离子交换液相色 谱(IEHPLC)分别根据保留时间与蛋白多肽的疏水-亲水性特征,Mr大小,极性的 关系 来分离样品中的物质。它们共同的优点是特异性高,分辨率好,可同时测定原药和降解物, 其中SEHPLC亦可得到结合物的信息,而RHPLC用于蛋白多肽的分离有独特的优越性。但因受 注入样品量的限制,灵敏度,重现性都受影响,且设备昂贵,成本较高。 1.4 色谱法 1.4.1 HPLC 在进行普通药物动力学研究中,HPLC是技术成熟,应用广 泛的分析手段。在蛋白多肽药物的实验研究或产业化中,HPLC都是主要的分离纯化工具。但鉴于蛋白多肽药物结 构的特殊性,除了一些小分子多肽,如peptichemio[8],加压素的八肽拮抗剂(oc tapeptid e antagonist of vasopressin)[9]可分别直接或经选择性柱反应后,单独 用带荧光检测 器的HPLC进行药动学研究外,HPLC常需进一步改进或与其它更灵敏的检测技术联用方能满足 药动学的需要。除了上述提及的与同位素的联用,还有许多与免疫学方法的联用,如Phillips[10]采用免疫亲和色谱技术分析人三种不同体液中粒细胞集落刺激因子的浓度; Partilla [11]等认为HPLC与RIA联用可以检测人体液中的神经肽。此外,令人瞩目的还有液 /质在线联用(LC-MS)。LC-MS将高分离能力,适用范围广泛的色谱分离技术与高灵敏、专属及通用,在研究蛋 白多肽的结构中具有重要价值的质谱法联用起来,成为强有力的分离分析方法。多年来限制 LC-MS技术发展的决定因素是接口问题,由传送带接口(Moving-belt interface),热喷 雾 接口(Thermospray),到最近的电喷雾离子化接口(Electrosptay ionization ESI),联 用技术日趋成熟,尤其适用于生物样品中低浓度(pg/ml)药物及代谢物的测定[12] ,而蛋 白多肽类药物恰有在体内代谢快,浓度低的特点。国外已将用LC-MS于该类药物,药物代 谢 物[13,14]的动力学研究,国内尚处于起步阶段,除了仪器本身价格昂贵,技术上亦存在 一些问题,如它对样品的纯度要求很高如何将药物从生物体液,尤其是血浆中提取纯化以 减少干扰;如何选择合适的内标以减少系统误差;在将LC-MS用于检测体育禁用肽(HCG,HGH ,EPO,ACTH等)时发现,糖肽难用于质谱分析,因为在质谱条件下,同样的氨基酸序列可产生 多种不同质量的多糖链,而每条链及整个分子都有可以产生质谱信号,这就大大降低了质谱 信号的专属性。目前,尽管LC-MS在蛋白多肽药物的体内药物代谢动力学研究中还存在一定的难度,但其作为实用性强,前景好的领域已引起人们的广泛关注。 1.4.2 高效毛细管电泳(HPCE) HPCE是离子或荷电粒子以电场为驱动力,在毛细管中按其 浓度和分配系数不同进行高效,快速分离的新技术,它以高分辨率,高灵敏度,分析时间短 ,样品量少及操作简单等诸多优点而成为蛋白多肽生物分子分离分析的重要手段。在临床 上 ,生物体液中低浓度蛋白多肽的分析面临的问题有:蛋白多肽与毛细管壁的相互作用所引起 的迁移时间的改变,这可以通过涂层CE加以改善;由于毛细管很细,管内容积很小,进样量 的不易控制给实验的重复性带来影响,而且很可能无法对低浓度的样品提供足够的灵敏度。 近年来,国外根据样品的性质采用不同的预处理,大体上可分为非特异性和高亲和性两种, 将样品加以浓缩,取得了满意的效果[15]。HPCE在检测上的迅速发展与HPLC已有并 驾齐驱之 势,况且鉴于HPCE在样品微量分析的优越性,已有人在药物动力学研究、体内分析中,将微 透析连续采样与之联用[16],这在整个药动学研究中都不失为一有希望的方向。 2 结 语 由以上可知,现代科学技术的发展给蛋白多肽类药物的研究提供了多样的分析手段,但鉴于 该类药物的特殊性,目前尚无一种方法能完全满足动力学研究的要求。根据人用药物注册国 际协调会议(ICH)对生物药物临床前安全性评价“在科学基础上的灵活性和具体情节个别 处理”的总则,人们通常将几种方法联合应用,互相补充,才能得到比较可靠的结果。

放大 缩小】【打印本文】【 】【返回顶部】【关闭窗口